Synlett
DOI: 10.1055/a-2659-8340
Letter
Alkynes in Organic Synthesis

Asymmetric Isochalcogenourea-Catalyzed Synthesis of 3,4-Dihydropyrans via (4+2)-Cycloadditions of Ethyl But-3-ynoate with Michael Acceptors

Mario Hofer
Institute of Organic Chemistry, Johannes Kepler University Linz, Linz, Austria
,
Magdalena Piringer
Institute of Organic Chemistry, Johannes Kepler University Linz, Linz, Austria
,
Anna Scheucher
Institute of Organic Chemistry, Johannes Kepler University Linz, Linz, Austria
,
Lukas S. Vogl
Institute of Organic Chemistry, Johannes Kepler University Linz, Linz, Austria
,
Institute of Organic Chemistry, Johannes Kepler University Linz, Linz, Austria
› Author Affiliations

Funding Information This work was funded by the Austrian Science Funds (FWF): Project No. P36004 (10.55776/P36004; financial support was also obtained through the matching funds program by the Austrian National Foundation for Research, Technology and Development, and the Research Department of the State of Upper Austria) is gratefully acknowledged.


Preview

Abstract

We herein report the use of ethyl but-3-ynoate as a C2 building block for asymmetric (4+2)-heterocycloadditions with various Michael acceptors. Upon using chiral isochalcogenoureas as Lewis base catalysts, these reactions can be carried out with good-to-excellent control of the regioselectivity, diastereoselectivity, and enantioselectivity.

Supplementary Material



Publication History

Received: 23 May 2025

Accepted after revision: 18 July 2025

Accepted Manuscript online:
18 July 2025

Article published online:
18 August 2025

© 2025. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References

    • 1a Kumar D, Sharma P, Singh H. et al. RSC Adv 2017; 7: 36977-36999
    • 1b Grover P, Bhardwaj M, Mehta L, Kapoor G, Chawla PA. Anti-Cancer Agents Med Chem 2022; 22: 3239-3268
    • 2a Fareed J, Hoppensteadt D, Walenga J. et al. Clin Pharmacokinet 2003; 42: 1043-1057
    • 2b Rocha DFO, Hamilton K, Goncalves CCS, Machado G, Marsaioli AJ. J Nat Prod 2011; 74: 658-663
  • 3 Song W, Wang S, Tang W. Chem Asian J 2017; 12: 1027-1042
    • 4a Clarke PA, Santos S. Eur J Org Chem 2006; 2045-2053
    • 4b Budakoti A, Mondal PK, Verma P, Khamrai J. Beilstein J Org Chem 2021; 17: 932-963
    • 4c Maddila S, Kerru N, Jonnalagadda SB. Molecules 2022; 27: 6347
    • 4d Desimoni G, Faita G, Quadrelli P. Chem Rev 2018; 118: 2080-2248
  • 8 Hofer M, Himmelsbach M, Monkowius U, Waser M. ChemCatChem 2025; 17: e202500452
    • 9a Taylor JE, Bull SD, Williams JMJ. Chem Soc Rev 2012; 41: 2109-2121
    • 9b Morrill LC, Smith AD. Chem Soc Rev 2014; 43: 6214-6226
    • 9c Birman VB. Aldrichimica Acta 2016; 49: 23
    • 9d Merad J, Pons J-M, Chuzel O, Bressy C, Eur J. Org Chem 2016; 5589-5610
    • 9e Biswas A, Mondal H, Maji MS. J Heterocycl Chem 2020; 57: 3818-3844
    • 9f McLaughlin C, Smith AD. Chem Eur J 2021; 27: 1533-1555
    • 9g Nimmo AJ, Young CM, Smith AD. Isothiourea Catalysis – New Opportunities for Asymmetric Synthesis, in Asymmetric Organocatalysis: New Strategies, Catalysts, and Opportunities. Albrecht Ł, Albrecht A, Dell’Amico L. ed. Weinheim: Wiley-VCH; 2023. Chapt. 5: 151
  • 10 Young CM, Elmi A, Pascoe DJ. et al. Angew Chem Int Ed 2020; 59: 3705-3710
    • 11a Maji B, Joanesse C, Nigst TA, Smith AD, Mayr H. J Org Chem 2011; 76: 5104-5112
    • 11b Harrison CJ, Dickerson SD, Gong Z, McGowan AS, Vista J, Wiskur SL. Eur J Org Chem 2024; 27: e202400641
    • 11c Vogl LS, Bechmann M, Waser M. Eur J Org Chem 2025; 28: e202401412
    • 11d Gong Z, Smith A, Harrison CJ, Trapnell E, Wiskur SL. J Org Chem 2025; 90: 4167-4172
  • 12 Snider BB, Spindell DK. J Org Chem 1980; 45: 5017-5020
  • 14 Xu Y, Hong YJ, Tantillo DJ, Brown MK. Org Lett 2017; 19: 3703-3706
  • 15 Zhang H, Han X, Chen T, Wang Z, Yao W. Org Lett 2024; 26: 7495-7500